当前位置: 首页 -> 师资队伍 -> 高层次人才 -> 正文

丁士友 博士,教授,博士生导师;国家级重点人才

Shiyou Ding PhD. Professor, Doctoral Supervisor

邮箱:kaibao2022@126.com

一、基本信息

丁士友,博士,生命科学学部首席教授,博士生导师;国家海外引才计划专家(2013)

电子邮件:kaibao2022@126.com

研究领域:微生物系统、合成生物学、绿色生物制造

 

二、教育背景

1991.9-1994.12 Ph.D.分子进化,中国科学院昆明植物研究所,昆明,云南

1986.9-1989.6 M.Sc.植物学,中国科学院西北植物研究所,杨凌,陕西

1982.9-1986.7 B.Sc.生物学,安徽师范大学,芜湖,安徽

三、工作经历

2025.3-至今 湖北大学,生命科学学院

2014.8-2025.3 密西根州立大学,东兰辛,密西根,美国,教授Tenured),植物生物学系

    子项目负责人(Project Leader,美国能源部大湖生物能源研究中心

2000.5-2014.8 美国能源部再生能源国家实验室(NREL),科罗拉多,美国

    资深科学家II (Scientist V),生命科学中心

    子项目负责人(Project Leader,美国能源部生物能源研究中心

1997.3-2000.5 魏兹曼科学研究所,以色列,研究助理

1993.4-1997.3 北京大学,生命科学学院,博士后

1989.9-1991.9 中国科学院西北植物研究所,助理研究员

四、获奖与荣誉

2013      第十批国家海外引才计划专家

2011-2014 研究教授(兼职),科罗拉多矿业学院,科罗拉多,美国

2010-2014 荣誉教授,江苏大学,镇江,江苏

2016-2019 荣誉教授,湖北大学,武汉,湖北

2017      杰出研究奖,美国能源部再生能源国家实验室

2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012,专利奖,美国中西部研究所

1992      所长奖,昆明植物所

五、文章、专利及学术报告等(完整列表见附件)

·共发表文章117篇,原创研究89篇,邀请综述,专著等28篇,受权专利13项

·H-Index=44, 引用:13691

·研究领域涉及植物学,物理化学,光学,纳米材料学,合成生物学等多学科交叉

·专业期刊编委: 5

·专业期刊审稿人: >30

·多国国家基金审稿人: 美国,加拿大,奥地利,挪威等

·多个专业国际组织咨询委员会成员(advisory committee)

·国际学术组织成员(membership):3

附件(各项完整列表)

发表论文,专利,邀请报告

http://scholar.google.com/citations?user=Cib13aMAAAAJ&hl=en

*通信作者

原创论文

1.Feng A., Guan Y., Yang H., Zheng B., Zeng W., Hao P., Bacic A., Ding S.-Y.*, Wu A.-M.* 2024, Characterization of hemicellulose in sacred lotus (Nelumbo nucifera Gaetn.) petiole during xylogenesis. Carbohydrate Polymers 349(2025):122940.

2.Widanage M. C. D., Gautam I., Sarkar D., Mentink-Vigier F., Vermaas J.V., Ding S.-Y., Lipton A. S., Fontaine T., Latgé J.-P., Wang P., Wang T. 2024, Adaptative Survival of Aspergillus fumigatus to Echinocandins Arises from Cell Wall Remodeling Beyondβ-1,3-glucan Synthesis Inhibition. Nat. Comm. https:// doi: 10.1038/s41467-024-50799-8.

3.Park S., Ding S.-Y.* 2024, Five amino acid mismatches in the zinc-finger domains of CELLULOSE SYNTHASE 5 and CELLULOSE SYNTHASE 6 modulate their incorporation into cellulose synthase complexes in Arabidopsis. Plant Mol. Bio. doi: https://doi.org/10.1007/s11103-024-01471-8

4.Crowe J. D., Hao P., Pattathil S., Pan H., Ding S.-Y., Hodge D. B., Jensen J. K.* 2021, Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls. Front. Plant Sci. doi: 10.3389/fpls.2021.737690

5.Zhang J., Shen W., Collings C., Vander Meulen K. A., Fox B. G., Vazquez Ramos L. M., Dumesic J. A., Ding S.-Y.* 2021, Visualizing plant cell wall changes proves the superiority of hydrochloric acid over sulfuric acid catalyzedγ-valerolactone pretreatment. Chem. Eng. J. doi.org/10.1016/j.cej.2021.128660

6.Ding S.-Y. and Bayer E. A. 2020, Understanding cellulosome interaction with cellulose by high-resolution imaging. ACS Central Sci. https://dx.doi.org/10.1021/acscentsci.0c00662

7.Park S., Ding S.-Y.* 2020, The N-terminal zinc finger of CELLULOSE SYNTHASE6 is critical in defining its functional properties by determining the level of homodimerization in Arabidopsis. Plant J. doi: 10.1111/tpj.14870.

8.Song B., Zhao S., Shen W., Collings C., and Ding S.-Y.* 2020, Direct Measurement of Plant Cellulose Microfibril and Bundles in Native Cell Walls. Front. Plant Sci. doi.org/10.3389/fpls.2020.00479.

9.Park S., Song B., Shen W., Ding S.-Y.* 2019, A mutation in the catalytic domain of cellulose synthase 6 halts its transport to the Golgi apparatus. J. Exp. Bot. 70(21):6071-6083.

10.Shen W., Collings C., Li M., Markovicz J., Ralph J., Mansfield S. D., Ding S.-Y.* 2019, Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy. ACS Sustainable Chem. Eng. doi.org/10.1021/acssuschemeng.9b01166.

11.Wei H., Yang Y., Himmel M. E., Tucker M. P., Ding S.-Y., Yang S., Arora R. 2019, Identification and characterization of five cold stress-related rhododendron dehydrin genes: spotlight on a FSK-type dehydrin with multiple F-segments. Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00030.

12.Li M., Yan G., Bhalla A., Maldonado-Pereira L., Russell P. R. Ding S.-Y., Mullet J. E., Hodge D. B. 2018, Physical fractionation of sweet sorghum and forage/energy sorghum for optimal processing in a biorefinery. Industrial Crops & Products, 124: 607–616.

13.Zhao C., Kim Y., Zeng Y., Li M., Wang X., Hu C., Gorman C., Dai S.Y., Ding S.-Y.*, Yuan J. S.* 2018, Co-Compartmentation of Terpene Synthesis and Storage via Synthetic Droplet. ACS Synth. Bio. DOI: 10.1021/acssynbio.7b00368.

14.Bhalla A., Bansal N., Pattathil S., Li M., Shen W., Particka C. A., Semaan R., Gonzales-Vigil E., Karlen S., Ralph J., Mansfield S., Ding S.-Y., Hodge D. B.*, Hegg E. L.* 2018, Engineered lignin in poplar biomass facilitates Cu-Catalyzed Alkaline-Oxidative pretreatment. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.7b02067.

15.Song B., Li B., Wang X., Shen W., Park S., Collings C., Feng A., Walton J. D., Smith S.J., Ding S.-Y.* 2018, Real-Time Imaging Reveals that Lytic Polysaccharide Monooxygenase Promotes Cellulase Activity by Increasing Cellulose Accessibility. Biotechnol. Biofuels. 11:41.

16.Zeng Y.*, Himmel M.E., Ding S.-Y. 2017, Visualizing Chemical Functionality in Energy Plant Cell Walls. Biotechnol. Biofuels. DOI 10.1186/s13068-017-0953-3.

17.Hu H., Zhang R., Feng S., Wang Y., Wang Y., Li, Fan C., Li Y., Liu Z., Schneider R., Xia T., Ding S.-Y., Persson S., Peng L.* 2017, Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol. J. DOI: 10.1111/pbi.12842.

18.Lin C.-Y., Jakes J. E., Donohoe B. S., Ciesielski P. E., Yang H., Gleber S. C., Vogt S., Ding S.-Y., Peer W. A., Murphy A. S., McCann M.C., Himmel M. E., Tucker M. P., Wei H.* 2016, Directed plant cell wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion. Biotechnol. Biofuels. 9:225.

19.Zhao S., Wei H.*, Lin C.-Y., Zeng Y., Tucker M. P., Himmel M. E., Ding S.-Y.* 2016, Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction. Front. Plant Sci. DOI: dx.doi.org/10.3389/fpls.2016.00024.

20.Zeng Y.*, Zhao S., We H., Tucker M. P., Himmel M. E., Mosier N. S., Meilan R., Ding S.-Y.* 2015, In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid. Biotechnol. Biofuels. 8:126.

21.Wei H.*, Brunecky R., Donohoe B. S., Ding S.-Y., Ciesielski P. N., Yang S., Tucker M. P., Himmel M. E. 2015, Identifying the relatively abundant, ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Front. Plant Sci. 6: 315.

22.Zhang L., Lu Z., Velarde L., Fu L., Pu Y., Ding S.-Y., Ragauskas A. J., Wang H.-F, Yang B.* 2015, Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). Cellulose, doi:10.1007/s10570-015-0588-0.

23.Wei H.*, Yang H., Ciesielski P. N., Donohoe B. S., McCann M. C., Murphy A. S., Peer W. A., Ding S.-Y., Himmel M. E., Tucker M. P. 2015, Transgenic ferritin overproduction enhances thermochemical pretreatments in Arabidopsis. Biomass Bioenergy, 72:55-64.

24.Zhao Q., Zeng Y., Yin Y., Pu Y., Jackson L. A., Engle N. L., Martin M. Z., Tschaplinski T. J., Ding S.-Y., Ragauskas A. J., Dixon R. A.* 2015, Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry, 112:170-178.

25.Wei H., Fu Y., Magnusson L., Baker J. O, Tucker M. P., Maness P.-C., Xu Q., Yang S., Bowersox A., Wang W., Himmel M. E., Ding S.-Y.* 2014, Comparison of transcriptional profiles of Clostridium thermocellum grown on pretreated yellow poplar using RNA-Seq. Front. Microbiol. 5:142.

26.Li H., Pattathil S., Foston M. B., Ding S.-Y., Kumar R., Gao X., Mittal A., Yarbrough J. M., Himmel M. E., Ragauskas A. J., Hahn M. G., Wyman C. E.* 2014, Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol. Biofuels. 7(1):50.

27.Ding S.-Y.*, Zhao S., Zeng Y. 2014, Size, shape, and arrangement of native cellulose fibrils in maize plant cell walls. Cellulose. 21 (2), 863-871.

28.Zeng Y., Zhao S., Yang S., Ding S.-Y.* 2014, Lignin plays a negative role in the biochemical process for lignocellulosic biofuels. Curr. Opini. Biotechnol. 27:38–45.

29.Xu Q., Ding S.-Y., Brunecky R., Bomble Y. J., Himmel M. E., Baker J. O.* 2013, Improving activity of minicellulosomes by integration of intra-and intermolecular synergies. Biotechnol. Biofuels 6, 126.

30.Lacayo C., Hwang, M. S., Ding S.-Y., Thelen M. P.* 2013, Lignin Depletion Enhances the Digestibility of Cellulose in Cultured Xylem Cells. PLoS ONE 8(7): e68266. doi:10.1371/ journal.pone.0068266.

31.Kataeva I., Foston M. B., Yang S.-J., Pattathil S., Biswal A. K., Poole F. L., Basen M., Rhaesa A. M., Thomas T. P., Azadi P., Olman V., Safford T. D., Mohler K. E., Lewis D. L., Doeppke C., Zeng Y., Tschaplinski T. J., York W., Davis M., Mohnen D., Xu Y., Ragauskas A. J., Ding S.-Y., Kelly R. M., Michael G Hahn, Adams M. W.W.* 2013, Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ. Sci. DOI: 10.1039/c3ee40932e.

32.Ding S.-Y.*, Liu Y.-S., Zeng Y., Himmel M. E., Baker J. O., Bayer E. A. 2012, How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338: 1055-1060. Reviewed by Dixon R. A. 2013, Microbiology: Break down the walls. Nature, 493:36–37

33.van der Lelie D.,*, Adney W.S., Ding S.-Y., Zeng Y., Donohoe D., Himmel M., Li L.-L., McCorkle S. M., Taghavi S., and Tringe S. G. 2012, The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS One 7(5): e36740. oi:10.1371/journal.pone.0036740.

34.Wei H., Tucker M., Baker J., Harris M., Luo Y., Xu Q., Himmel M., Ding S.-Y.* 2012, Tracking dynamics of biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnol. Biofuels. 5(1):20.

35.Hoover E. E.*, Field J. J., Winters D. G., Young M. D., Chandler E. V., Speirs J. C., Lapenna J. T., Kim S. M., Ding S.-Y., Bartels R. A., Wang J. W., Squier J. A.* 2012, Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems. J. Biophotonics. DOI: 10.1002/jbio.201100139.

36.Brunecky R., Alahuhta M., Bomble Y. J., Xu Q., Adney W. S., Ding S.-Y., Himmel M. E., and Lunin V. V.* 2012, Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex. Acta Cryst. D68, 292-299.

37.Wei H., Donohoe B. S., Vinzant T. B., Ciesielski P. N., Wang W., Gedvilas L. M., Zeng Y., Johnson D. K., Ding S.-Y., Himmel M. E., Tucker M. P.* 2011, Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass. Biotechnol. Biofuels 4:48 doi:10.1186/1754-6834-4-48.

38.Foston M., Hubbell C. A., Samuel R. Jung S., Fan H., Ding S.-Y., Zeng Y., Jawdy S., Kalluri U., Davis M., Skyes R., Tuskan G. A. and Ragauskas A. J*. 2011, Chemical, ultrastructural and supramolecular analysis of tension wood in Populus as a model substrate for reduced recalcitrance. Energy Environ. Sci. DOI: 10.1039/c1ee02073k.

39.Yang B.*, Dai Z., Ding S.-Y., Wyman C. E. 2011, Enzymatic Hydrolysis of Cellulosic Biomass: A Review. Biofuels 2:421-450.

40.Liu Y.-S., John O. Baker J. O., Zeng Y., Himmel M. E., Hass T., Ding S.-Y.* 2011, Cellobiohydrolase Hydrolyzes Crystalline Cellulose on Hydrophobic Faces. J. Bio. Chem. 286:11195-11201.

41.Dagel D.J., Liu Y.-S., Zhong L., Luo Y., Zeng Y., Himmel M., Ding S.-Y.*, and S. Smith S. J.* 2011, DOPI and PALM Imaging of Single Carbohydrate Binding Modules Bound to Cellulose Nanocrystals. SPIE Proc. Proc. SPIE 7905, 79050P. doi:10.1117/12.875285.

42.Alahuhta M., Luo Y., Ding S.-Y., Himmel M. E. and Lunin V. V.* 2011, The crystal structure of CBM4 from Clostridium thermocellum Cellulase K. Acta Cryst. F. 67:527-530

43.Shi W., Ding S.-Y., and Yuan J. S.* 2011, Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. BioEnergy Res. 4:1–10.

44.Dagel D. J., Liu Y.-S., Zhong L., Luo Y., Himmel M. E., Xu Q., Zeng Y., Ding S.-Y.*, Smith S. J.* 2010, In situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils. J. Phys. Chem. B. 115:635-41.

45.Hemme C. L., Mouttaki H., Lee Y.-J., Zhang G., Goodwin L., Lucas S., Copeland A., Lapidus A., Glavina del Rio T., Tice H., Saunders E., Brettin T., Detter J. C., Han C. S., Pitluck S., Land M. L., Hauser L. J., Kyrpides N., Mikhailova N., He Z., Wu L., Van Nostrand J. D., Henrissat B., He Q., Lawson P. A., Tanner R. S., Lynd L.R., Wiegel J., Fields M. W., Arkin A. P., Schadt C. W., Stevenson B. S., McInerney M. J., Yang Y., Dong H., Xing D, Ren N., Wang A., Huhnke R. L., Mielenz J. R., Ding S.-Y., Himmel M. E., Taghavi S., van der Lelie D., Rubin E. M., and Zhou J.* 2010, Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production. J. Bacteriol. 192:6494-6496.

46.Field J. J.*, Sheetz K. E., Chandler E. V., Young M. D., Ding S.-Y., Sylvester A. W., Kleinfeld D. and Squier J. A. 2010, Differential Multiphoton Microscopy. IEEE J. Selected Topics in Quantum Electronics. DOI: 10.1109/JSTQE.2010.2077622.

47.Alahuhta M., X Q., Brunecky R., Adney W. S., Ding S.-Y., Himmel M. E., Lunin V. V.* 2010. The crystal structure of an Fn(III)-like protein module from Clostridium thermocellum. Acta Cryst. F. 66, 878-880.

48.Alahuhta M., X Q., Bomble Y. J., Adney W. S., Ding S.-Y., Himmel M. E., and Lunin V. V.* 2010, The unique binding mode of the Cellulosomal CBM4 from Clostridium thermocellum Cellobiohydrolase A. J. Mol. Bio. 402:374-87.

49.Saar B. G., Zeng Y., Freudiger C. W., Liu Y.-S., Himmel M. E., Xie X. S.*, and Ding S.-Y.* 2010, Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 49:5476–5479.

50.Lacayo C. I., Malkin A. J., Holman H.-Y. N., Ding S.-Y., Hwang, M. S., and Thelen M. P.* 2010, Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements. Plant Physiol. 154:121–133.

51.Himmel, M. E., Xu, Q., Luo, Y., Ding, S.-Y., Lamed, R., and Bayer, E. A.* 2010, Microbial Enzyme Systems for Biomass Conversion: Emerging Paradigms. Biofuels. 1:323-341.

52.Zhao Q., Gallego-Giraldo L., Wang H., Zeng Y., Ding S.-Y., Chen F. and Dixon R. A.* 2010, A NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 63:100–114.

53.Harris D., Bulone V., Ding S.-Y., DeBolt S.* 2010, Tools for cell wall cellulose analysis. Plant Physiol. 153:420-426.

54.Zeng Y., Saar B., Friedrich M. G., Chen F., Liu Y.-S., Dixon R. A., Himmel M. E., Xie, X. S., and Ding S.-Y.* 2010, Imaging lignin-down-regulated alfalfa using coherent anti-Stokes Raman scattering microscopy. BioEnergy Res. 3:272-277.

55.Liu Y.-S., Luo Y., Baker J. O., Zeng Y., Himmel M. E., Smith S., Ding S.-Y.* 2010, A single molecule study of cellulase hydrolysis of crystalline cellulose, Proc. SPIE, Vol. 7571, Single Molecule Spectroscopy in Biology, 757103. Doi:10.1117/12.840975.

56.Wei H., Xu Q., Taylor II L.E., Baker J. O, Tucker M. P., and Ding S.-Y.* 2009, Natural paradigms of plant cell wall degradation. Curr. Opin. Biotechnol. 20:330–338.

57.Yarbrough J. M., Himmel M.E., and Ding S.-Y.* 2009, Plant Cell Wall Characterization Using Scanning Probe Microscopy Techniques. Biotechnol. Biofuels 2:17.

58.Liu Y.-S., Zeng Y., Luo Y., Xu Q., Himmel M. E., Smith S. J., and Ding S.-Y.* 2009, Does the Cellulose-binding module move on the cellulose surface? Cellulose 16:587-597.

59.Chandler E., Hoover E., Field J. Sheetz K., Amir W., Carriles R., Ding S.-Y., and Squier J.* 2009, High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy. Appl. Optics 48:2067-2077.

60.Xu Q., Song Q., Ai X.*, McDonald T. J., Long H., Ding S.-Y., Himmel M.E., and Rumbles G. 2009, Engineered carbohydrate-binding module (CBM) protein-suspended single-walled carbon nanotubes in water. Chem. Commun. 21:337–339.

61.Ding S.-Y.*, Himmel M. E., and Xie S. X. 2008, Identify molecular structural features of biomass recalcitrance using nondestructive microscopy and spectroscopy. Microscopy and Microanalysis 14:1494-1495. doi:10.1017/S1431927608088582.

62.Ding S.-Y.*, Xu Q., Crowley M., Zeng Y., Nimlos M., Lamed R., Bayer E. A., and Himmel M. E. 2008, A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr. Opin. Biotechnol. 19:218–227.

63.Xu Q., Tucker M. P., Arenkiel P., Ai X., Rumbles G., Sugiyama J., Himmel M.E., and Ding S.-Y.* 2008, Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose. 16:19-26. (Cover art)

64.Taylor II L. E., Dai Z., Decker S. R., Brunecky R., Adney W. S., Ding S.-Y., and Himmel M. E.* 2008, Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol. 26:413-424.

65.Ai X., Xu Q., Jones M, Song Q., Ding S.-Y., Ellingson R. J., Himmel M.E. and Rumbles G.* 2007, Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochem. Photobiol. Sci. 6:1027–1033.

66.Porter S. E.*, Donohoe B. S., Beery K. E., Xu Q., Ding S.-Y., Vinzant T. B., Abbas C. A., and Himmel M. E. 2007, Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnol. Bioeng. 98:123-31.

67.Himmel M. E.*, Ding S.-Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., and Foust T. D. 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804-807.

68.Zhang Y.-H. P.*, Ding S.-Y., Mielenz J. R., Cui J.-B., Elander R. T., Laser M., Himmel M. E., McMillan J. R., and Lynd L. R. 2007, Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97:214-223.

69.Ding S.–Y.*, Xu Q., Ali M.K., Baker J.O., Bayer E.A.*, Barak Y., Lamed R., Sugiyama J., Rumble G., and Himmel M.E. 2006, Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. BioTechniques 41:435-443.

70.Ding S.-Y.*, and Himmel M.E. 2006, The maize primary cell wall microfibril: A new model derived from direct visualization. J. Agric. Food Chem. 54:597-606.

71.Ding S.-Y.*, Smith S., Xu Q., Sugiyama J., Jones M., Rumble G., Bayer E.A., and Himmel M.E. 2005, Towards building ordered arrays of quantum dots using cellulosomal proteins Indust. Biotech. 1:198-206. (Cover art)

72.Qian X.*, Ding S.-Y., Nimlos M.R., Johnson D.K., and Himmel M.E. 2005, The atomic and electronic structures of molecular crystalline cellulose I─A first-principles investigation. Macromolecules 38:10580-10589.

73.Feng J., Ding S.-Y., Tucker M.P., Himmel M.E.*, Kim Y.-H., Zhang S.B., Keyes B.M., and Rumble G. 2005, Cyclodextrin driven hydrophobic/hydrophilic transformation of semiconductor nanoparticles. Appl. Phys. Lett. 86:033108.

74.Ding S.-Y., Rumble G., Jones M., Tucker M.P., Nedeljkovic J., Simon M.N., Wall J.S. and Himmel M.E.* 2004, Bioconjugation of (CdSe)ZnS quantum dots using a genetically engineered multiple polyhistidine tagged cohesin/dockerin protein polymer. Macromol. Mater. Eng. 289:622-628. (Cover art)

75.Ding S.-Y., Jones M., Tucker M.P., Nedeljkovic J.M., Wall J.S., Simon M.N., Rumble G.*, and Himmel M.E. 2003, Quantum dot molecules assembled with genetically engineered proteins. Nano Lett. 3:1581-1585.

76.Xu Q., Gao W., Ding S.-Y., Kenig R., Shoham Y., Bayer E.A.*, and Lamed R. 2003, The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell-surface anchoring protein. J. Bacteriol. 185:4548-4557.

77.Rincon M.T., Ding S.-Y., Mccrae S.I., Martin J.C., Aurilia V., Lamed R., Shoham Y., Bayer E.A., and Flint H. J.* 2003, Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J. Bacteriol. 185:703-713.

78.Ding S.-Y., Rincon M.T., Lamed R., Martin J. C., Mccrae S.I., Aurilia V., Shoham Y., Bayer E.A.*, and Flint H. J. 2001, Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J. Bacteriol. 183:1945-1953.

79.Ding S.-Y., Bayer E.A.*, Steriner D., Shoham Y. and Lamed R. 2000, An atypical scaffoldin of the Bacteroides cellulosolvens cellulosome that contains eleven type-II cohesins. J. Bacteriol. 182:4915-4925.

80.Ding S.-Y., Bayer E.A.*, Steriner D., Shoham Y. and Lamed R. 1999, A Novel Cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 Glycosyl Hydrolase. J. Bacteriol. 181:6720-6729.

81.Ding S.-Y.*, Gu H., Qu L., and Chen Z. 1995, A preliminary study on the use of RFLP analysis of the PCR amplified products in the systematics investigation of the subtribe Astragalinae (Fabaceae). Acta Bot. Sin. 7-102. (Chinese with English abstract)

82.Ding S.-Y.*, Zhang C., Gu H., and Chen Z. 1996, Progresses of studies on plant systematics at DNA level. Acta Bot. Boreal.-Occident. Sin. 16:578-588. (Chinese with English abstract)

83.Ding S.-Y.*, Zhang C., Gu H., and Chen Z. 1996, General review of the methods of molecular systematics of plants at DNA level. Acta Bot. Boreal.-Occident. Sin. 16:197-202.

84.Chu L., Li Y., Quan S., Ding S.-Y., Suzuki R., and Chen Z.* 1996, Sequence analysis and expression in E. coli of RDV S7. Acta Microbiol. Sin. 36:335-343. (Chinese with English abstract)

85.Chen Y., Zhang C., Ding S.-Y., and Zhang Z.* 1993, The taxonomy and analysis of Artemisia Linn. In the Loess Plateau of northern Shaanxi. Acta Bot. Boreal.-Occident. Sin. 13:238-245. (Chinese with English abstract)

86.Ding S.-Y., and Yu Z.* 1992, Systematic signification of leaf structure of Staphyleaceae. Bull. Bot. 12:177-184. (Chinese with English abstract)

87.Zhang Z.*, Zhang C., Chen Y., and Ding S.-Y. 1992, A preliminary study in the border line of the floristic regionalization in the Loess Plateau of northern Shaanxi. Acta Bol. Boreal.-Occident. Sin. 12:303. (Chinese with English abstract)

88.Zhang Y., and Ding S.-Y.* 1991, A resource of nectariferous plants in Shaanxi. Acta Bot. Boreal.-Ocedent. Sin. 11:185-189. (Chinese with English abstract)

89.Ding S.-Y., and Yu Z.* 1988, Study on the pollen of Staphyleaceae. Acta Bot. Boreal.-Ocedent. Sin. 8:29-33. (Chinese with English abstract)

受邀综述,专著等

1.Ding S.-Y.* 2016, Nanoscale Structure of Biomass. In Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion (Schlaf M. and Zhang Z. C. Eds), Springer, New York. 1-14.

2.Hor A., Dagel D., Luu Q., Savaikar M., Ding S.-Y., Smith S.* 2015, Photo-Activated Localization Microscopy of Single Carbohydrate Binding Modules on Cellulose Nanofibers. Bulletin of the American Physical Society, APS March Meeting 2015 Volume 60, Number 2.

3.“Biological Conversion of Biomass for Fuels and Chemicals: Exploration from Natural Biomass Utilization Systems, Editors: Sun J., Ding S.-Y., and Peterson J. D., Royal Society Chemistry, UK. 2014.

4.Ding S.-Y.* 2014, Overview of lignocellulose: structure and chemistry. In Biological Conversion of Biomass for Fuels and Chemicals: Exploration from Natural Biomass Utilization Systems (Sun J., Ding S.-Y., Peterson J. D., Eds), Royal Society of Chemistry, Cambridge, UK.

5.Sun J., Ding S.-Y. Peterson, J. D. 2014, Biomass and its biorefinery: novel approaches from nature-inspired strategy and technology. In Biological Conversion of Biomass for Fuels and Chemicals: Exploration from Natural Biomass Utilization Systems (Sun J., Ding S.-Y., Peterson J. D., Eds), Royal Society of Chemistry, Cambridge, UK.

6.Liu Y.-S. Ding S.-Y.* 2014, Advances in the measurement/characterization of biomass structure and its processing. In Biological Conversion of Biomass for Fuels and Chemicals: Exploration from Natural Biomass Utilization Systems (Sun J., Ding S.-Y., Peterson J. D., Eds), Royal Society of Chemistry, Cambridge, UK.

7.Fried D. B., Moraïs, S., Xu Q., Ding S.-Y., Baker J. O., Bomble Y., Himmel M. E., Bayer E. A. 2013, Self-assembly and application of cellulosomal components. In Bionanotechnology: Bionanotechnology: Biological self-assembly and its applications, (B. Rehm, Ed.,) Horizon Scientific Press, Norwich, UK.

8.Ding S.-Y.*, and Liu Y.-S. 2012, Imaging cellulose using atomic force microscopy. In Biomass Conversion, Methods and Protocols (Himmel M. E. Ed.), Humana Press, pp. 23-30.

9.Liu Y.-S., Ding S.–Y.*, Himmel M. E. Single molecule tracking of carbohydrate-binding module on cellulose using fluorescence microscopy. In Biomass Conversion, Methods and Protocols (Himmel M. E. Ed.), Humana Press, pp. 129-140.

10.Zeng Y., Himmel M. E., Ding S.-Y.* 2012, Coherent Raman Microscopy Analysis of Plant Cell Walls. In Biomass Conversion, Methods and Protocols (Himmel M. E. Ed.), Humana Press, pp. 49-60.

11.Xu Q., Luo Y., Ding S.-Y., Himmel M. E., Bu L., Lamed R. and Bayer E. A.* 2011. Multifunctional Enzyme Systems for Plant Cell Wall Degradation. In Comprehensive Biotechnology, Second Edition (Murray Moo-Young Ed.), volume 3, pp. 15–25.

12.Ding S.-Y.*, and Himmel M. E. 2008. Anatomy and ultrastructure of maize cell walls: an example of energy plants. In Biomass Recalcitrance, Deconstructing the Plant Cell Wall for Bioenergy, (Himmel M. E. Ed.) Blackwell Publishing, Oxford, UK. pp. 38-60.

13.Atalla R. H.*, Brady J. W., Matthews J. F., Ding S.-Y., and Himmel M. E. 2008. Structures of plant cell wall celluloses. In Biomass Recalcitrance, Deconstructing the Plant Cell Wall for Bioenergy, (Himmel M. E. Ed.) Blackwell Publishing, Oxford, UK. pp. 188-212.

14.Xu Q., Adney W. S., Ding S.-Y., and Himmel M. E.* 2007. Cellulases for biomass conversion. In Industrial Enzymes: Structure, Function and Applications (Polaina J. and MacCabe A. P. Eds.), Springer, London, UK. pp. 35-50.

15.Jones M., Ding S.-Y., Tucker M. P., Kim Y. H., Zhang S. B., Himmel M. E. and Rumbles G.* 2006. Stabilization of (CdSe)ZnS quantum dots in water using amino acid capping groups, in 205th Meeting of the Electrochemical Society (Rumbles G. and Murakoshi T. Eds), Electrochemical Society Inc., San Antonio, Texas, pp. 340-349

16.Ding S.-Y.*, Xu Q., Bayer E.A., Qian X., Rumble G., and Himmel M.E. 2006. Bacterial protein complexes with potential applications in nanotechnology. In Microbial Bionanotechnology: Biological self-assembly systems and biopolymer-based nanostructures (B. Rehm, Ed.,) Horizon Scientific Press, Norwich, UK. pp. 269-305.

17.Zhang P.*, Ding S.-Y., Smith S., Rumble G., and Himmel M.E. 2004. Investigation of novel quantum dots/proteins/cellulose bioconjugates using NSOM and photoluminescence. Proceedings of SPIE, Physical Chemistry of Interfaces and Nanomaterials III 5513:137-144.

18.Feng J., Kim Y.-H., Zhang S.B., Ding S.-Y., Tucker M.P., Rumble G., and Himmel M.E.* 2004. Cyclodextrins stabilize topo-(cdse)zns quantum dots in water. Mater. Res. Soc. Symp. Proc. Materials Research Society 823:W4.5.

19.Ding S.-Y.*, Rumble G., Jones M., Tucker M.P., Nedeljkovic J., Wall J., and Himmel M.E. 2003. Quantum dots stabilized by genetically engineered proteins. Mat. Res. Soc. Symp. Proc. Materials Research Society 774:165-170.

20.Ding S.-Y.*, Lamed R., Bayer E.A., Himmel M.E. 2003. The bacterial scaffoldin: structure function and potential applications in the nanosciences. In Genetic Engineering: Principles and Methods (J. K. Setlow, ed.), Kluwer Academic/Plenum Publishers, NY. 25:209-225.

21.Ding S.-Y.*, Adney W.S., Vinzant T.B., Decker S.R., Baker J.O., Thomas S.R., and Himmel M.E. 2003. Glycosyl hydrolases gene cluster of Acidothermus cellulolyticus. Applications of enzymes to lignocellulosics. ACS SYMPOSIUM SERIES (Mansfield S. D. and Saddler J. N. Eds). 855:332-360.

22.Adney W.S., Chou Y.-C., Decker S.R., Ding S.-Y., Baker J.O., Vinzant T.B., Kunkel G., and Himmel M.E.* 2003. Heterologous expression of Trichoderma reesei 1,4-beta-D-glucan cellobiohydrolase. Applications of enzymes to lignocellulosics. ACS SYMPOSIUM SERIES (Mansfield S. D. and Saddler J. N. Eds). 855:403-437.

23.Bayer E.A.*, Ding S.-Y., Shoham Y. and Lamed R. 1999. New perspectives in the structure of cellulosome-related domains from different species. In Genetics, biochemistry and ecology of cellulose degradation (Ohmiya K. Ed.) Uni Publishers Co., Ltd., Tokyo, Japan. 428-436.

24.Bayer E.A.*, Ding S.-Y., Mechaly A., Shoham Y. and Lamed R. 1999. Emerging phylogenetics of cellulosome structure. In Recent advances in carbohydrate bioengineering (Gilbert, H., Davies, G. J., Henrissat, B., and Svensson B. Eds). The Royal Society of Chemistry, Cambridge, UK. pp. 189-201.

25.Ding S.-Y.*, Zhang C., Gu H., and Chen Z. 1996. Plant systematics at DNA level. In The Proceeding of the Symposium of the Postdoctoral Fellow in China. pp. 938-943. (Chinese)

26.Ding S.-Y., and Yu Z.* 1992. The preliminary study on chemical taxonomy of Staphyleceae. Proceeding of the 1st Symposium of Systematic Botany in Northwestern China. pp. 108-111. (Chinese)

27.Ding S.-Y.*, and Zhang Y. 1991. The conservation plants in northwestern China. In Ecological Environment in Northwestern China. 1:353-364. (Chinese)

28.Zhang Z.*, Zhang C., and Ding S.-Y. 1991. Plants in the Loess Plateau. In The Resource and Application of Plants in the Loess Plateau. pp. 194-287. (Chinese)

受邀报告(选)

1.“Biosynthesis of cellulose in plants”, 4th International BioDesign Research Conference, October 27-30, 2023, Wuhan, China

2.“Imaging plant cellulose structure, biosynthesis and biodegradation”, Crop Design: Genomics-Assisted Breeding, on-line, December 6, 2022.

3.“Nondestructive imaging plant cell wall structure and chemistry, MSU workshop: Hemp Fiber-based Ultra-resilient Carbon-negative Construction Materials. August 8, 2022.

4.“In situ visualization of engineered lignin in plant cell walls by stimulated Raman scattering microscopy”. ACS National Meeting. April 9, 2021.

5.“Imaging and Quantification of Plant Cell Wall Constituents”. February 27, 2020, 2020 Bioimaging Science Program (BSP) Annual Principal Investigator Meeting, Washington DC.

6.“Real-Time Imaging and Quantification of Plant Cell Wall Constituents Using Cavity-Dumped Stimulated Raman Scattering (cdSRS) Microscopy”. February 27, 2019, 2019 Bioimaging Science Program (BSP) Annual Principal Investigator Meeting, Tysons, VA.

7.“Lignin as a negative factor impeding biomass degradation: Localizing lignins in plant cell walls by chemical imaging, March 13, 2018, NIBIO, Norway.

8.”Real-time imaging reveals lytic polysaccharide monooxygenase (LPMO) promotes cellulose activity by increasing cellulose accessibility”. May 2, 2018, SBFC, Clearwater, FL.

9.”Understanding Plant Cell Wall Structure by in-situ Imaging”. August 6, 2018, PNNL, Richland, WA.

10.“Understanding Plant Cell Wall Architecture and Chemistry by Real-time Imaging”. August 20, 2018, ANL, IL.

11.”Plant Cell Wall Architecture and Chemistry by Real-time Imaging”. August 28, ANL, IL.

12.”Bioimaging”. The 2rd International Symposium on Zymomonas mobilis. Oct. 20, 2018, Wuhan, China.

13.Poster: Imaging native Structure of Plant Cell Wall Microfibril , Wei Shen, Shi-You Ding. February 25-28, 2018, Genomic Sciences Program Annual PI Meeting, Tysons, Virginia.

14.“Real-time imaging of cellulose microfibril and biosynthesis”, 253rd ACS National meeting, April 2-16, 2017, San Francisco, CA.

15.“Real-time imaging of cellulose microfibril and biosynthesis”, Tight Interactions, April 6, 2017, Weizmann Institute of Science, Rehovot, Israel

16.“Real-time imaging of cellulose microfibril and biosynthesis”, April 13, 2017, South Dakota School of Mines and Technology, Rapid City, SD.

17.“Plant cell wall composition and degradation”Invited participant and session chair for the workshop,“Technologies for Characterizing Molecular and Cellular Systems Relevant to Bioenergy and Environment”sponsored by the US Department of Energy, Office of Science, The Biological Systems Science Division (BSSD), September 21-23, 2016, in Rockville, Maryland.

18.“Bioenergy Research at US Department of Energy”, August 11, 2016, Biotechnology for Bioeconomy (B4B) Conference, As, Norway.

19.“In vivo chemical imaging of single cells”, July 18, 2016, Guangxi University, Nanning, China.

20.“Real-time imaging of plant cell wall nanoscale architecture and biodegradation”, July 7, 2016, University of British Columbia, Vancouver, Canada.

21."Lipid Production in Single Oleaginous Yeast Cells Using In Vivo Label-Free Imaging", March 8, 2016, 2016 Genomic Sciences Program Annual PI Meeting, Tysons, Virginia.

22.“Real-time imaging to identify plant cell wall features that affect processing”, January 7, 2016, DOE BESC workshop, Riverside CA.

23."Studying lipid accumulation mechanism in oleaginous yeast using hyperspectral SRS microscopy and RNA-Seq in single cells", Genomic Science Contractors-Grantees Meeting XIII/USDA-DOE Plant Feedstock Genomics for Bioenergy Meeting. February 22-25, 2015, Sheraton Tysons Hotel, Virginia.

24.“Advanced imaging methods in biology”, July 15, 2015, Guangxi University, China.

25.“Nanoscale visualization of plant cell wall architecture and disassembly”, MIE Bioforum 2014. November 18-21, 2014, Nemuno Sato, Ise-Shima, Japan.

26.“Measuring plant cell wall with AFM”, June 25, 2014, Colorado State University, Fort Collins, CO.

27.“Quantitative chemical imaging of lignin species in biomass and their behavior in pretreatment and enzyme hydrolysis”, 36th Symposium on Biotechnology for Fuels and Chemicals. April 28–May 2, 2014, Clearwater, FL.

28.“Mechanistic understanding of cellulose biodegradation using integrated microscopic systems”, 247th ACS National Meeting. March 16-20, 2014, Dallas, TX.

29.“Stimulated Raman Scattering (SRS) and Atomic Force Microscopy (AFM) studies of enzymatic deconstruction of plant cell walls”, Genomic Science Program 2014 Contractor-Grantee Meeting, Feb. 10-12, 2014. Crystal City, VA.

30.“Nanoscale Accessibility Facilitates Plant Cell Wall Digestibility by Cellulases”, Gordon Research Conferences: Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes. August 4-9, 2013, Andover, NH.

31.“Plant cell wall nanostructure and biodegradation”, Bioforsk, Ås, Norway, June 21, 2013

32.“Size, shape and arrangement of cellulose microfibril in higher plant cell walls”, 245th ACS National Meeting, 100 Years of Cellulose Diffraction. April 7, 2013, New Orleans, LA.

33.“How does nanoscale architecture of plant cell wall correlate with enzymatic digestibility?”, Third Bioenergy Symposium, October 14-20, 2012, Wuhan, China.

34.“Cellulases Bind and Digest Cellulose from Its Planar (Hydrophobic) Faces”, 34th Symposium on Biotechnology for Fuels and Chemicals, April 30–May 3, 2012, New Orleans, LA.

35.“Real-time imaging of biomass degradation”, January 24, 2012, Colorado School of Mines, Golden, CO.

36.“Cellulose biosynthesis and biodegradation”, October 4, 2011, The Pennsylvania State University, University Park, PA.

37.“Real-time imaging of biomass degradation”, Telluride Workshop - New Frontiers and Grand Challenges in Laser-based Biological Microscopy, August 2, 2011, Telluride Science Research Center, Telluride, CO.

38.“Label-free and real-time imaging of biomass degradation”, Discussion Leader- Emerging Technologies-Shaping the Future of CAZYme Research, Gordon Research Conference - Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes, July 24, 2011, Stonehill College, Easton, MA.

39.“In situ Imaging of Biomass and Its Degradation”, June 6, 2011, Liquid Crystal Institute, Kent State University, Kent, OH.

40.“Understanding Biomass Recalcitrance by Chemical and Single Molecule Imaging”, October 5, 2010, Virginia Polytechnic Institute and State University, Blacksburg, VA.

41."Understanding Biomass Recalcitrance by Chemical and Single Molecule Imaging", April 4th, 2010, University of California Davis, Davis, CA

42.“Biophysics in Cellulose Biosynthesis and biodegradation”, The 54th Biophysical Society Annual Meeting, February 21-24, 2010, San Francisco, CA.

43.“Scientific Challenges in biomass Conversion to Biofuels”, February 17, 2010, Colorado School of Mines, Golden, CO.

44.“A Single Molecule Study of Cellulose Hydrolysis of Crystalline Cellulose”, SPIE Photonics West, January 22-26, 2010, San Francisco, CA.

45.“Understanding Biomass Recalcitrance, An Update from Imaging”, The DOE BioEnergy Science Center meeting, Biomass Characterization Workshop, January 7-9, 2010, Riverside, CA.

46.“From Biomass to Biofuels–Does It Affect Food Price?”, McGill Conference on Global Food Security, October 8-10, 2009, Montreal, QC. Canada

47.“Scientific Challenges in Biomass Conversion to Biofuels”, September 10, 2009, Washington State University, Pullman, WA.

48.“Improve Understanding Of Biomass Structure And Its Chemical And Biological Conversion Processes”, The 5th Would Congress on Industrial Biotechnology & Bioprocessing, July 21, 2009, Montreal, QC. Canada.

49.“Plant Cell Wall Cellulose Microfibrils: Biosynthesis, Molecular Structure, and Dynamics in the Processes of Deconstruction to Sugars for Biofuels Production”, April 2, 2009, University of Georgia, Athens, GA.

50.“Identify Molecular Features of Biomass Recalcitrance Using Non-Destructive Microscopy and Spectroscopy”, ABRF 2009, February 7-10, 2009, Memphis, TN.

51.“Identify Molecular Features of Biomass Recalcitrance Using Non-Destructive Microscopy and Spectroscopy”, 237th ACS National Meeting & Exposition, March 22-26, 2009, Salt Lake City, UT.

52.“Identify Molecular Structural Features of Biomass Recalcitrance Using Non-destructive Microscopy and Spectroscopy”. April 2, 2008, Bowling Green State University, OH.

53.“Nanoscale Characterization of Plant Cell-Wall Microfibril Structure”, 235th ACS National Meeting, April 7, 2008, New Orleans, LA.

54.“Nanoscale Characterization of Biomass Structure”, The Fifth Annual World Congress on Industrial Biotechnology & Bioprocessing, April 28, 2008, Chicago, IL.

55.“Identify Molecular Structure Features of Recalcitrance”, Cell Wall Biosynthesis 3, Asilomar Conference Center, June 8-11, 2008, Pacific Grove, CA.

56.“Sub-Nanometer Imaging Of Microfibril Structure Of Maize Primary Cell Walls Using Atomic Force Microscopy. The Pan American Congress on Plant & BioEnergy, June 22-25, 2008, Merida, Mexico.

57.“Identify Molecular Features of Biomass Recalcitrance Using Imaging”, Microscopy & Microanalysis 2008 Meeting, Improving“Green”Products through Imaging: Biomass, Biofuels and Bioproducts, August 3-7, 2008, Albuquerque, NM.

58.“Understanding Biomass Recalcitrance Using Advanced Imaging”, 2008 Int'l. Bioenergy & Bioproducts Conference, August 27-28, 2008, Portland, OR.

59.“Characterization of Plant Cell Wall Microfibril Structure Using Advanced Imaging Approaches”, Gordon Research Conference: Cellulases and Cellulosomes, July 29- August 3, 2007, Andover, NH.

60.“Plant Cell Wall Microfibrils - Nanometer Scale Characterization of Biomass Recalcitrance”, TAPPI 2007 International Conference on Nanotechnology for the Forest Products Industry, June 13-15, 2007, Knoxville, TN.

61.“Plant Cell Wall Microfibril Structure and Changes during Biomass Conversion Processes”, 28th Symposium on Biotechnology for Fuels and Chemicals, April 30–May 3, 2006, Nashville, TN.

62.“Nanotechnology for Renewable Energy Applications”. The 3rd World Congress on Industrial Biotechnology and Bioprocessing, April 20-22, 2005, Orlando, FL.

63.“Direct Visualization of Maize Cell Wall Ultrastructural Changes during Pretreatment And Bioconversion”, 27th Symposium on Biotechnology for Fuels and Chemicals, May 1-4, 2005, Denver, CO.

64.“Quantum Dots Arrayed on Nanofibrils Using Surface Binding Modules”, The 27th DOE Solar Photochemistry Research Conference, June 6-9, 2004, Airlie Conference Center, Warrenton, VA.

65.“Nanotechnology at NREL: Protein-Quantum Dots, Engineering QD Arrays”, Jan. 22-24, 2003, Brookhaven National Laboratory, Upton, NY.

66.“New Glycosyl Hydrolases from Acidothermus cellulolyticus”, 24th Symposium on Biotechnology for Fuels and Chemicals, April 28 - May 1, 2002, Gatlinburg, TN.

67.“Cellulosomes in Acetivibrio cellulolyticus and Bacteroides cellulosolvens. Gordon Research Conference on Cellulases and Cellulosomes, July 25-30, 1999, Proctor Academy, Andover, NH.

68.“Preliminary Evidence Of High-Molecular-Weight Scaffoldin-Like Proteins From Ruminococcus flavefaciens, 3rd Carbohydrate Bioengineering Meeting, April 11-14, 1999, University of Newcastle Upon Tyne, UK.

69.“Evidence for Cohesin and CBD Domains, Characteristic of Cellulosomes in Non-Clostridial Anaerobic Bacteria”, 8th International Symposium on the Genetics of Industrial Microorganisms, June 28-July 2, 1998, Jerusalem, Israel.

专利

1.Ding S.-Y. Improved Plant Fiber Quality, Application No: 16/967,931. US20200370064

2.Ding S.-Y. Biotechnology for improving cotton fibre quality, MSU invention disclosure, reference code TEC2018-0046.

3.Ding S.-Y., Adney W.S., Vinzant T.B., and Himmel M.E. Thermal tolerant avicelase from Acidothermus cellulolyticus; US Patent 7538200.

4.Adney W. S., Baker J.O., Decker S.R., Chou Y.-C., Himmel M. E., and Ding S.-Y. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum. US Patent 7449550.

5.Adney W. S., Baker J.O., Decker S.R., Chou Y.-C., Himmel M. E., and Ding S.-Y. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum. US Patent 8283150.

6.Adney W.S., Ding S.-Y., Vinzant T.B., Himmel M.E. Decker S. R., and McCarter S. L. Thermal tolerant exoglucanase from Acidothermus cellulolyticus. US Patent 7393673.

7.Ding S.-Y., Adney W.S., Vinzant T.B., and Himmel M.E. Thermal tolerant avicelase from Acidothermus cellulolyticus. US Patent 7364890.

8.Ding S.-Y., Adney W.S., Vinzant T.B., and Himmel M.E. Thermal tolerant mannanase from Acidothermus cellulolyticus. US Patent 7112429.

9.Adney W. S., Vinzant T. B., Ding; S.-Y., Himmel M. E. Methods of using thermal tolerant avicelase from Acidothermus cellulolyticus. US Patent 7,932,054.

10.Ding S.-Y., Adney W.S., Vinzant T.B., Himmel M.E., and Decker, S. R. Thermal tolerant cellulase from Acidothermus cellulolyticus. US Patent 7059993.

11.Himmel M.E., Sakon J., Adney W.S., Decker S.R., McCarter S., Ding S.-Y., Vinzant T.B., and Baker J.O. Site Specific Mutations conferring thermal tolerance to Trichoderma reesi CBHI. NREL New Invention # 01-31.

12.Ding S.-Y., Decker S.R., and Himmel M.E. Corn stem anatomy animation, NREL New Invention # 05-44.

13.Ding S.-Y., and Wei H. Application of natural and engineered endophytic fungi to improve the feedstock for biofuels production. NREL New Invention # 09-51.

 

基金资助(总计:$2,700余万)

 

2023-2026MCA: Understanding cellulose synthase complexin plantausing single molecule methods– $373,450,NSF/MCB

Role:Principal Investigator

2022-2023Engineering Cellulose Synthase-encoding Genes to Improve Cotton Fiber Quality– $24,000,MTRAC AgBio Program

Role:Principal Investigator

2021-2022Great Lakes Bioenergy Research Center (GLBRC)– $216,975 (year 15)

Role:co-PIin research Aim 8

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2018-2021Real-Time Imaging and Quantification of Plant Cell Wall Constituents Using Cavity-Dumped Stimulated Raman Scattering (cdSRS) Microscopy- $1,500,000

Role:Principal Investigator

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science.

No-cost extension 8/31/2024

2020-2021Great Lakes Bioenergy Research Center (GLBRC)– $214,895 (year 14)

Role:co-PIin research Aim 8

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2019-2020Great Lakes Bioenergy Research Center (GLBRC)– $66,410 (year 13)

Role:Project Leaderin research Aim 5

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2019-2020Great Lakes Bioenergy Research Center (GLBRC)– $209,089 (year 13)

Role:Project Leaderin research Aim 8

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2018-2019Great Lakes Bioenergy Research Center (GLBRC)– $132,821 (year 12)

Role:Project Leaderin research Aim 5

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2018-2019Great Lakes Bioenergy Research Center (GLBRC)– $140,464 (year 12)

Role:Project Leaderin research Aim 8

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2018-2019Modification of Cellulose Synthesis Genes to Improve Cotton Fiber Quality– $24,999,MTRAC AgBio Program

Role:Principal Investigator

2017-2018Great Lakes Bioenergy Research Center (GLBRC)– $127,350 (year 11)

Role:Project Leaderin research Aim 5

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2017-2018Great Lakes Bioenergy Research Center (GLBRC)– $140,057 (year 11)

Role:Project Leaderin research Aim 8

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2016-2017Great Lakes Bioenergy Research Center (GLBRC)-$204,000 (year 10)

Role:Project Leaderfor the project: Real-Time Imaging to Identify Plant Cell Wall Features That Affect Processing

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000 for GLBRC. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2015-2016Great Lakes Bioenergy Research Center (GLBRC)-$252,000 (year 9)

Role:Project Leaderfor the project: Real-Time Imaging to Identify Plant Cell Wall Features That Affect Processing

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000K for GLBRC. Director: Dr. Tim Donohue, University of Wisconsin - Madison

2014-2017Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study- $747,000

Role:co-Principal Investigator

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $1,500,000.University PI: Prof. Sunney Xie at Harvard University

2014-2015Great Lakes Bioenergy Research Center (GLBRC)- $450,000 (year 8)

Role:Project Leaderfor the project: Real-Time Imaging to Identify Plant Cell Wall Features That Affect Processing

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $25,000,000 for GLBRC. Director: Dr. Tim Donohue, University of Wisconsin – Madison

2012-2017Imaging Cellulose - Carbohydrate Binding Module Interactions with Nanometer Resolution Using Single Molecule Fluorescence Methods-$49,719

Role:co-Principal Investigator

The US National Science Foundation, Division of Materials Research. PI: Steve Smith, South Dakota School of Mines & Technology. Total cost: $290,877

2012-2014BioEnergy Science Center(BESC)- $1,500,000

Role:Project Leaderfor the project: in-depth characterization

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $125,000,000 for BESC. Director: Dr. Paul Gilna, ORNL

2011-2014Study of Distribution and Deconstruction Kinetics of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy- $1,100K

Role:National LabPrincipal Investigator

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $2,250,000.University PI: Prof. Sunney Xie at Harvard University

2009-2014Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)”- $1,000K

Role:co-Investigator

The US DOE, the Energy Frontier Research Centers (EFRC), the Office of Basic Energy Sciences (BES)in the Office of Science. Total cost: $20,000,000 forC3Bio. Director: Prof. Maureen McCann, Purdue University

2003-2011Biomass Structure and Development Fundamentals / Advanced Cell Wall Characterization- $ 1,700K/year, non-competitive

Role:Subtask Leader

The US DOE, the Office of the Biomass Program (OBP) in the Office of Energy Efficiency and Renewable Energy (EERE). Total cost: ~$7,000,000/year for the Target Conversion Research task

2007-2012BioEnergy Science Center(BESC) - $2,500,000

Role:Project Leaderfor the project: in-depth characterization

The US DOE, the Genomic Science Program, the Office of Biological and Environmental Research (OBER) in the Office of Science. Total cost: $125,000,000 for BESC. Director: Dr. Paul Gilna, ORNL

2008-2011Understanding Natural Paradigms for Plant Cell Wall Deconstruction: Community Dynamics and Structure of the Decaying Poplar Wood Pile- $500,000

Role:Principal Investigator

NREL LDRD program

2007-2010Study of Lignocellulosic Material Degradation with CARS Microscopy- $250,000

Role:National LabPrincipal Investigator

TheUS DOE, theGenomics:GTL program,OBERin the Office of Science.Total cost: $1,500K.University PI: Prof. Sunney Xie at Harvard University

2001-2006Understanding Nanoscale Chemistry: Quantum Dot Interactions with Proteins- $2,000,000

Role:co-Principal Investigator

The US DOE, the Solar Photochemistry Program (National Nanotechnology Initiative), BES in the Office of Science. PI: Dr. Arthur Nozik, NREL

1991-1997Molecular Systematics of Subtribe Astragalinae (Fabaceae)- ¥ 120,000

Role:Principal Investigator

The National Natural Science Foundation of China.

1991-1997Systematics of Polygonatum- ¥ 90K

Role:Co-Principal Investigator

The National Natural Science Foundation of China.PI: Dr. G. Rao, Peking University

1991-1995Phylogenetic Reconstruction of Subtribe Astragalinae: Evidence from Restriction Site Mapping of A PCR-amplified Fragment Which Encompassed cpDNA genesndhF andpsbA- ¥ 50,000

Role:Principal Investigator

TheNational Laboratoryof Protein Engineering andPlant Genetic Engineering,Peking University

1991-1995Systematics of Astragalinae- ¥ 50,000

Role:Principal Investigator

Director Fellowship funded by the Kunming Institute of Botany, Chinese Academy of Sciences

专业期刊编委:Biotechnology for Biofuels, Environmental Science & Ecotechnology (ESE), Frontiers in Bioengineering and Biotechnology, Crop Design

 

专业期刊审稿人:ACS Synthetic Biology, American Journal of Botany, Advances in Carbohydrate Chemistry and Biochemistry, Journal of Agriculture and Food Chemistry, Analytica Chimica Acta, Applied Biochemistry and Biotechnology, Applied and Environmental Microbiology, Biofuels, Journal of Biological Chemistry, Journal of Bacteriology, Journal of Biophotonics, Biomacromolecules, Bioresource Technology, Biotechnology & Bioengineering, Biotechnology for Biofuels, Carbohydrate Polymers, Carbohydrate Research, Cellulose, Journal of Computational and Theoretical Nanoscience,Environmental Science & Technology, Journal Experimental Botany, FEMS Microbiology Letters, Food Biophysics, Fuel, Macromolecules, Nanotechnology, Journal of The Royal Society Interface, Journal 0f Industrial Microbiology & Biotechnology, Journal of Physical Chemistry, World Journal Microbiology and Biotechnology, JoVE, Langmuir, Science

 

多国国家基金审稿人:American Chemical Society Petroleum Research Fund (2018); Canada BioFuelNet (2009-2019); Canada Excellence Research Chairs program (2017); US DOE SBIR/STTR (2020, 2021, 2023); US DOE OBER (2019-2022); US DOE SCGSR (2023); Austrian Science Fund (2018, 2022, 2023); NSF CISE/OAC (2018), CSSI (2021); NSF- BSF (2022); USDA NIFA (2016); Netherlands Organisation for Scientific Research (2016)

 

专业国际组织咨询委员会

Research Management Committee: BioFuelsNet (2011-2017), Canada

Head of Scientific Advisory Subcommittee:Canadian Research Innovation and Integration Biofuels Sustainability (CRIIBS) (2010)

Member of the Board Directors: Canadian Biofuel and Biorefinery Network (CBBN) (2009)

Invited panel member: The World Congress on Industrial Biotechnology and Bioprocessing (2005-2010)

Consortium Partner: Bioboost: Development of a plant biotechnology platform for low cost production of industrial enzymes to boost biorefinery of lignocellulose biomass, Bioforsk – Norwegian Institute for Agricultural & Environmental Research, Norway (2014-2017)

Membership:American Chemical Society (ACS), The American Association for the Advancement of Science (AAAS), American Society of Plant Biologists (ASPB)

 

培养博士及博士后

 

Postdoctoral Researchers(Current position): Jun Feng (Matheson Tri-Gas),Qi Xu (NREL Scientist), Scott Luo (Research Scientist, U. Texas at Austin), John Yarbrough (NREL Scientist), Angela Liu (Senior Chemist, Oso BioPharmaceuticals Manufacturing, LLC), Hui Wei (Scientist, NREL), Yining Zeng (Scientist, NREL), Shuai Zhao (Associate Professor, Guangxi University), Wei Shen (Professor, QIBBT), Muyang Crystal Li (Industry, CA), Sungjin Park (MSU), Bo Song (Professor, USTC), Jian Zhang (Professor, ECUST), Panpan Li (Industry, CA), Lin Kang (MSU), Xuejun Qian (UW-Madison), John Tran (MSU).

Students & Interns: David Steriner (Tel Aviv U.), Igor Bogorad (UCLA), Thomas Haas (UC Berkeley), Michelle Harris (Colorado School of Mines), Lauren Magnusson (U. Guelph), Andrew Bowersox (Barnstable High School teacher), Bana Abolibdeh (MSU), Cameron Cummings (MSU), Meg Kargul (MSU), Jake Markowicz (MSU), Connor Stewart (MSU),Zachary Ladwig (Medical Practice, Western Michigan University), Amelia Keyser-Gibson (Haverford College), Libby Breton (Siena Heights University). Abisola Ojoawo (South Dakota School of Mines & Technology), Ju Huang (Hubei University), Yu Wang (Hubei University), Panchalee Mahavithana (MSU Honors College)

Ph.D. Student Advisees:Anran Feng (MSU, 2016 -), Chandler Hendrickson (MSU, 2023-)

M.S. Student Advises:Clint Slocum (MSU, 2015 -2017)

Ph.D. committees: Bingyao Li (MSU), John Tran (MSU), Jacob Crowe (MSU), Amber Bassett (MSU), Haojun Wang (MSU)

Teaching

PLB 203, Co-instructor (2014)

PLB 301, Instructor (2015-)

WRA291, Faculty Mentor (2022)

(2025年4月更新)


 

联系我们

地址导航:湖北省武汉市武昌区友谊大道368号

邮政编码:430062

联系电话:(027)88664102

  • 湖北大学官微

版权所有©湖北大学 2016 湖北大学党委宣传部 鄂ICP备05003305鄂公网安备 42010602000204号